...
Calculate the Earth heliocentric longitude, latitude, and radius vector (L, B, and R)
Calculate Earth heliocentric longitude (L):
Mathblock |
---|
L0_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
L0 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
L1_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
L1 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
L2_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
L2 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
L3_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
L3 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
L4_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
L4 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
L5_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
L5 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
L = \frac{(L0 + L1*JME + L2*JME^2 + L3*JME^3 + L4*JME^4 + L5*JME^5)}{10^8} |
Calculate Earth heliocentric latitude (B):
Mathblock |
---|
B0_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
B0 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
B1_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
B1 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
B = \frac{(B0 + B1*JME)}{10^8} |
Calculate the Earth radius vector (R) in astronomical units (AU):
Mathblock |
---|
R0_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
R0 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
R1_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
R1 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
R2_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
R2 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
R3_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
R3 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
R4_i = A_i * cos (B_i + C_i * JME) |
Mathblock |
---|
R4 = \sum_{i=0}^{n} L0_i |
Mathblock |
---|
R = \frac{(R0 + R1*JME + R2*JME^2 + R3*JME^3 + R4*JME^4)}{10^8} |
Caculate the geocentric longitude and latitude (Θ and ß)
Mathblock |
---|
\theta = L + 180 |
Mathblock |
---|
\beta = -B |
Calculate the nutation in longitude and obliquity (Δψ and Δε)
...